If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2+a-175=0
a = 4; b = 1; c = -175;
Δ = b2-4ac
Δ = 12-4·4·(-175)
Δ = 2801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2801}}{2*4}=\frac{-1-\sqrt{2801}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2801}}{2*4}=\frac{-1+\sqrt{2801}}{8} $
| 3.6÷9=b÷0.5 | | 3x+28=6x+30 | | 165+6y-y=90 | | r-3.3=1.7 | | -2(-7-7n)=112 | | |5n+10|=35 | | 4+u)(3u+7)=0 | | p-6.1=10 | | 3(6n-6)=108 | | 9a-9=5a+19 | | 32=5w+3 | | -9=z-4 | | 84-7x12=28 | | 12/60=6/b | | 5a/6-7/12+3a/4=-2.16 | | 4x/3+10=x+50/3+10 | | 81n^2-8=-4 | | 8(2x+5)=7(x-9) | | 2x^2-12x-29=0 | | 16=-4m+8 | | 8-4(p+3)=16p | | 8x-6=6+3 | | 8x-6=6=3 | | -4.9x^2+178x+164=0 | | -24=-3n | | -4.9t^2+178t+164=0 | | x/4=2900-300 | | 15/5x=4x/3x | | 7h-13=-27 | | 5x^2+1=471 | | 26=1/2h(8+5) | | A=1/2h(8+5) |